Fixed beamforming is widely used in practice since it does not depend on the estimation of noise statistics and provides relatively stable performance. However, a single beamformer cannot adapt to varying acoustic conditions, which limits its interference suppression capability. To address this, adaptive convex combination (ACC) algorithms have been introduced, where the outputs of multiple fixed beamformers are linearly combined to improve robustness. Nevertheless, ACC often fails in highly non-stationary scenarios, such as rapidly moving interference, since its adaptive updates cannot reliably track rapid changes. To overcome this limitation, we propose a frame-online neural fusion framework for multiple distortionless differential beamformers, which estimates the combination weights through a neural network. Compared with conventional ACC, the proposed method adapts more effectively to dynamic acoustic environments, achieving stronger interference suppression while maintaining the distortionless constraint.


翻译:固定波束形成技术因其不依赖于噪声统计量估计且能提供相对稳定的性能,在实践中得到广泛应用。然而,单个波束形成器无法适应变化的声学环境,从而限制了其干扰抑制能力。为解决这一问题,自适应凸组合算法被提出,通过线性组合多个固定波束形成器的输出来提升鲁棒性。尽管如此,在高度非平稳场景(如快速移动的干扰源)中,自适应凸组合算法常因无法可靠跟踪快速变化而失效。为克服此限制,本文提出一种面向多个无失真差分波束形成器的帧级在线神经融合框架,通过神经网络估计组合权重。与传统自适应凸组合方法相比,所提方法能更有效地适应动态声学环境,在保持无失真约束的同时实现更强的干扰抑制。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2021年9月13日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员