We formally define a novel valuable information retrieval task: image-to-multi-modal-retrieval (IMMR), where the query is an image and the doc is an entity with both image and textual description. IMMR task is valuable in various industrial application. We analyze three key challenges for IMMR: 1) skewed data and noisy label in metric learning, 2) multi-modality fusion, 3) effective and efficient training in large-scale industrial scenario. To tackle the above challenges, we propose a novel framework for IMMR task. Our framework consists of three components: 1) a novel data governance scheme coupled with a large-scale classification-based learning paradigm. 2) model architecture specially designed for multimodal learning, where the proposed concept-aware modality fusion module adaptively fuse image and text modality. 3. a hybrid parallel training approach for tackling large-scale training in industrial scenario. The proposed framework achieves SOTA performance on public datasets and has been deployed in a real-world industrial search system, leading to significant improvements in click-through rate and deal number. Code and data will be made publicly available.
翻译:暂无翻译