Despite the success of invariant risk minimization (IRM) in tackling the Out-of-Distribution generalization problem, IRM can compromise the optimality when applied in practice. The practical variants of IRM, e.g., IRMv1, have been shown to have significant gaps with IRM and thus could fail to capture the invariance even in simple problems. Moreover, the optimization procedure in IRMv1 involves two intrinsically conflicting objectives, and often requires careful tuning for the objective weights. To remedy the above issues, we reformulate IRM as a multi-objective optimization problem, and propose a new optimization scheme for IRM, called PAreto Invariant Risk Minimization (PAIR). PAIR can adaptively adjust the optimization direction under the objective conflicts. Furthermore, we show PAIR can empower the practical IRM variants to overcome the barriers with the original IRM when provided with proper guidance. We conduct experiments with ColoredMNIST to confirm our theory and the effectiveness of PAIR.
翻译:尽管在解决分配外普遍化问题方面成功地实现了风险最小化(IRM),但IMM在实际应用时会损害最佳性,例如IRMv1等IRM的实用变体已证明与IMM存在重大差距,因此即使存在简单的问题,也不可能捕捉到这种差异。此外,IRMv1的优化程序涉及两个内在矛盾的目标,往往需要仔细调整客观加权数。为了纠正上述问题,我们重新将IMM作为一个多目标优化问题,并提出一个新的IMM优化方案,称为Pareto variative 风险最小化(PAIR)。PIR可以调整目标冲突下的优化方向。此外,我们表明PAIR能够赋予实际的IMM变体在得到适当指导的情况下克服原IRM障碍的能力。我们与ColedMNIST进行实验,以证实我们的理论和PAIR的有效性。