A new weak Galerkin method based on the weak tangential derivative and weak second order partial derivative is proposed to extend the well-known Morley element for the biharmonic equation from triangular elements to general polytopal elements. The Schur complement of the weak Galerkin scheme not only enjoys the same degrees of freedom as the Morley element on the triangular element but also extends the Morley element to any general polytopal element. The error estimates for the numerical approximation are established in the energy norm and the usual $L^2$ norms. Several numerical experiments are demonstrated to validate the theory developed in this article.
翻译:Galerkin基于微弱的近似衍生物和微弱的第二顺序部分衍生物的新弱Galerkin方法,旨在将众所周知的双调方程的Morley元素从三角元素扩大到一般多式元素。弱的Galerkin制的Schur补充物不仅享有与三角元素Morley元素相同的自由度,而且还将Morley元素扩大到任何一般的多式元素。数字近似值的误差估计值在能源规范中和通常的2美元规范中得到确定。一些数字实验证明本条所发展的理论是正确的。