Low-light hazy scenes commonly appear at dusk and early morning. The visual enhancement for low-light hazy images is an ill-posed problem. Even though numerous methods have been proposed for image dehazing and low-light enhancement respectively, simply integrating them cannot deliver pleasing results for this particular task. In this paper, we present a novel method to enhance visibility for low-light hazy scenarios. To handle this challenging task, we propose two key techniques, namely cross-consistency dehazing-enhancement framework and physically based simulation for low-light hazy dataset. Specifically, the framework is designed for enhancing visibility of the input image via fully utilizing the clues from different sub-tasks. The simulation is designed for generating the dataset with ground-truths by the proposed low-light hazy imaging model. The extensive experimental results show that the proposed method outperforms the SOTA solutions on different metrics including SSIM (9.19%) and PSNR(5.03%). In addition, we conduct a user study on real images to demonstrate the effectiveness and necessity of the proposed method by human visual perception.
翻译:暂无翻译