Existing quantum computers can only operate with hundreds of qubits in the Noisy Intermediate-Scale Quantum (NISQ) state, while quantum distributed computing (QDC) is regarded as a reliable way to address this limitation, allowing quantum computers to achieve their full computational potential. However, similar to classical distributed computing, QDC also faces the problem of privacy leakage. Existing research has introduced quantum differential privacy (QDP) for privacy protection in central quantum computing, but there is no dedicated privacy protection mechanisms for QDC. To fill this research gap, our paper introduces a novel concept called quantum R\'enyi differential privacy (QRDP), which incorporates the advantages of classical R\'enyi DP and is applicable in the QDC domain. Based on the new quantum R\'enyi divergence, QRDP provides delicate and flexible privacy protection by introducing parameter $\alpha$. In particular, the QRDP composition is well suited for QDC, since it allows for more precise control of the total privacy budget in scenarios requiring multiple quantum operations. We analyze a variety of noise mechanisms that can implement QRDP, and derive the lowest privacy budget provided by these mechanisms. Finally, we investigate the impact of different quantum parameters on QRDP. Through our simulations, we also find that adding noise will make the data less usable, but increase the level of privacy protection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。对照于传统的通用计算机,其理论模型是通用图灵机;通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,目前某些已知的量子算法在处理问题时速度要快于传统的通用计算机。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员