We study mechanisms of synchronisation, coordination, and equilibrium selection in two-player coordination games on multilayer networks. We apply the approach from evolutionary game theory with three possible update rules: the replicator dynamics (RD), the best response (BR), and the unconditional imitation (UI). Players interact on a two-layer random regular network. The population on each layer plays a different game, with layer I preferring the opposite strategy to layer II. We measure the difference between the two games played on the layers by a difference in payoffs $\Delta S$ while the inter-connectedness is measured by a node overlap parameter $q$. We discover a critical value $q_c(\Delta S)$ below which layers do not synchronise. For $q>q_c$ in general both layers coordinate on the same strategy. Surprisingly, there is a symmetry breaking in the selection of equilibrium -- for RD and UI there is a phase where only the payoff-dominant equilibrium is selected. Our work is an example of previously observed differences between the update rules on a single network. However, we took a novel approach with the game being played on two inter-connected layers. As we show, the multilayer structure enhances the abundance of the Pareto-optimal equilibrium in coordination games with imitative update rules.
翻译:我们在多层网络的双玩协调游戏中研究同步、协调和平衡选择机制。 我们应用进化游戏理论的方法, 并有三种可能的更新规则: 复制机动态( RD) 、 最佳响应( BR) 和无条件仿制( UI) 。 玩家在双层随机常规网络中互动。 每个层的玩家玩不同的游戏, 一层我偏向不同的策略, 第二层。 我们测量在两层玩的两场游戏之间的差异, 不同的是支付差异$\ Delta S$, 而相互连接则用一个节点重叠参数 $q$q_ c( Delta S) 来测量。 我们发现一个关键值 $q_ c ( Delta S), 下面的层不能同步 。 对于 $q> q_ c$, 普通的两层都在同一个策略上进行协调 。 令人惊讶的是, 在选择平衡时存在着一种对等分的分解。 在 RD 和 II 中, 我们只选择报酬- miniant 平衡的阶段。 我们的工作是以前观察到的在单一网络上更新规则之间出现的差异。 但是, 我们展示了双层的平级的游戏 和级的平级的平级的游戏 。 我们展示了对层的游戏在多层结构。