Explanation of AI, as well as fairness of algorithms' decisions and the transparency of the decision model, are becoming more and more important. And it is crucial to design effective and human-friendly techniques when opening the black-box model. Counterfactual conforms to the human way of thinking and provides a human-friendly explanation, and its corresponding explanation algorithm refers to a strategic alternation of a given data point so that its model output is "counter-facted", i.e. the prediction is reverted. In this paper, we adapt counterfactual explanation over fine-grained image classification problem. We demonstrated an adaptive method that could give a counterfactual explanation by showing the composed counterfactual feature map using top-down layer searching algorithm (TDLS). We have proved that our TDLS algorithm could provide more flexible counterfactual visual explanation in an efficient way using VGG-16 model on Caltech-UCSD Birds 200 dataset. At the end, we discussed several applicable scenarios of counterfactual visual explanations.
翻译:对大赦国际的解释,以及算法决定的公正性和决定模式的透明度,正在变得越来越重要。在打开黑盒模型时,设计有效和人文友好的技术至关重要。反事实符合人类思维方式,并提供对人友好的解释,其相应的解释算法是指对特定数据点的战略交替,以便其模型输出是“反行动”的,即:预测得到恢复。在本文中,我们对细微的图像分类问题进行了反事实解释。我们展示了一种适应性方法,通过使用自上而下的层搜索算法(TDLS)显示构成的反事实特征图,可以提供反事实解释。我们已经证明,我们的TDLS算法可以有效地利用Caltech-UCSBird 200数据集的VGG-16模型提供更灵活的反事实直观解释。最后,我们讨论了一些可适用的反事实直观解释情景。