Explanation of AI, as well as fairness of algorithms' decisions and the transparency of the decision model, are becoming more and more important. And it is crucial to design effective and human-friendly techniques when opening the black-box model. Counterfactual conforms to the human way of thinking and provides a human-friendly explanation, and its corresponding explanation algorithm refers to a strategic alternation of a given data point so that its model output is "counter-facted", i.e. the prediction is reverted. In this paper, we adapt counterfactual explanation over fine-grained image classification problem. We demonstrated an adaptive method that could give a counterfactual explanation by showing the composed counterfactual feature map using top-down layer searching algorithm (TDLS). We have proved that our TDLS algorithm could provide more flexible counterfactual visual explanation in an efficient way using VGG-16 model on Caltech-UCSD Birds 200 dataset. At the end, we discussed several applicable scenarios of counterfactual visual explanations.


翻译:对大赦国际的解释,以及算法决定的公正性和决定模式的透明度,正在变得越来越重要。在打开黑盒模型时,设计有效和人文友好的技术至关重要。反事实符合人类思维方式,并提供对人友好的解释,其相应的解释算法是指对特定数据点的战略交替,以便其模型输出是“反行动”的,即:预测得到恢复。在本文中,我们对细微的图像分类问题进行了反事实解释。我们展示了一种适应性方法,通过使用自上而下的层搜索算法(TDLS)显示构成的反事实特征图,可以提供反事实解释。我们已经证明,我们的TDLS算法可以有效地利用Caltech-UCSBird 200数据集的VGG-16模型提供更灵活的反事实直观解释。最后,我们讨论了一些可适用的反事实直观解释情景。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员