Collaborative filtering (CF), as a fundamental approach for recommender systems, is usually built on the latent factor model with learnable parameters to predict users' preferences towards items. However, designing a proper CF model for a given data is not easy, since the properties of datasets are highly diverse. In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model by AutoML techniques. The key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction function, and prediction function. We further develop an easy-to-use, robust, and efficient search strategy, which utilizes random search and a performance predictor for efficient searching within the above framework. In this way, we can combinatorially generalize data-specific CF models, which have not been visited in the literature, from SOTA ones. Extensive experiments on five real-world datasets demonstrate that our method can consistently outperform SOTA ones for various CF tasks. Further experiments verify the rationality of the proposed framework and the efficiency of the search strategy. The searched CF models can also provide insights for exploring more effective methods in the future
翻译:合作过滤(CF)是建议者系统的基本方法,通常以具有可学习参数的潜在要素模型为基础,用于预测用户对项目的偏好。然而,为特定数据设计一个适当的CF模型并非易事,因为数据集的特性差异很大。在本文件中,由于自动化机器学习(Automle)的最新进展,我们提议用AutomalML技术来设计一个数据专用CF模型。关键在于一个新的框架,它统一了最新技术(SOTA)的CF方法,并将其分为输入编码、嵌入功能、互动功能和预测功能的脱节阶段。我们进一步开发一个容易使用的、稳健高效的搜索战略,利用随机搜索和性能预测器在上述框架内有效搜索。这样,我们就可以对文献中未曾访问过的数据特定CFF模型进行总体整理。对五个真实世界数据集进行的广泛实验表明,我们的方法可以持续地超越STA系统对各种CF任务进行编码、嵌入功能、互动功能和预测功能的同步阶段。我们进一步开发一种容易使用、稳健、高效的搜索战略,还可以进一步核查拟议的CFFSF的理性探索方法。