In standard generative deep learning models, such as autoencoders or GANs, the size of the parameter set is proportional to the complexity of the generated data distribution. A significant challenge is to deploy resource-hungry deep learning models in devices with limited memory to prevent system upgrade costs. To combat this, we propose a novel framework called generative optimization networks (GON) that is similar to GANs, but does not use a generator, significantly reducing its memory footprint. GONs use a single discriminator network and run optimization in the input space to generate new data samples, achieving an effective compromise between training time and memory consumption. GONs are most suited for data generation problems in limited memory settings. Here we illustrate their use for the problem of anomaly detection in memory-constrained edge devices arising from attacks or intrusion events. Specifically, we use a GON to calculate a reconstruction-based anomaly score for input time-series windows. Experiments on a Raspberry-Pi testbed with two existing and a new suite of datasets show that our framework gives up to 32% higher detection F1 scores and 58% lower memory consumption, with only 5% higher training overheads compared to the state-of-the-art.


翻译:在标准的基因深层学习模型中,如自动编码器或GANs,参数集的大小与生成的数据分布的复杂性成比例。一个重大挑战是如何在记忆有限的设备中部署资源渴望的深学习模型,以防止系统升级费用。为此,我们提议了一个称为基因优化网络的新框架,这个框架与GANs相似,但不使用发电机,大大缩小其记忆足迹。GONs使用单一的区分器网络,在输入空间中优化生成新的数据样本,实现培训时间和记忆消耗之间的有效折中。GONs最适合在有限的记忆环境中生成数据的问题。我们在这里演示它们用于在袭击或入侵事件引起的记忆限制边缘装置中异常探测的问题。具体地说,我们用GON计算输入时间序列窗口的重建异常分数。在Raspberry-Pi测试台上实验有两个现有和新的数据集显示我们的框架给出了32%的探测F1分和58%的低记忆消耗率,相比之下,只有5%的高级管理管理费培训。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2020年10月8日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员