One reason why standard formulations of the central limit theorems are not applicable in high-dimensional and non-stationary regimes is the lack of a suitable limit object. Instead, suitable distributional approximations can be used, where the approximating object is not constant, but a sequence as well. We extend Gaussian approximation results for the partial sum process by allowing each summand to be multiplied by a data-dependent matrix. The results allow for serial dependence of the data, and for high-dimensionality of both the data and the multipliers. In the finite-dimensional and locally-stationary setting, we obtain a functional central limit theorem as a direct consequence. An application to sequential testing in non-stationary environments is described.
翻译:暂无翻译