Despite the remarkable success of deep learning, optimal convolution operation on point cloud remains indefinite due to its irregular data structure. In this paper, we present Cubic Kernel Convolution (CKConv) that learns to voxelize the features of local points by exploiting both continuous and discrete convolutions. Our continuous convolution uniquely employs a 3D cubic form of kernel weight representation that splits a feature into voxels in embedding space. By consecutively applying discrete 3D convolutions on the voxelized features in a spatial manner, preceding continuous convolution is forced to learn spatial feature mapping, i.e., feature voxelization. In this way, geometric information can be detailed by encoding with subdivided features, and our 3D convolutions on these fixed structured data do not suffer from discretization artifacts thanks to voxelization in embedding space. Furthermore, we propose a spatial attention module, Local Set Attention (LSA), to provide comprehensive structure awareness within the local point set and hence produce representative features. By learning feature voxelization with LSA, CKConv can extract enriched features for effective point cloud analysis. We show that CKConv has great applicability to point cloud processing tasks including object classification, object part segmentation, and scene semantic segmentation with state-of-the-art results.
翻译:尽管深层学习取得了显著的成功,但点云的最佳融合行动由于其不规则的数据结构,仍然不固定。在本文件中,我们介绍Cubic Kernel Convolution(CKConv),通过利用连续和离散的融合来学习本地点特征的合成。我们的连续革命独有地使用了三维立方格的内核重量代表形式,该形式将一个特征分裂成嵌入空间中的氧化物。通过连续地应用离散的三维共振动,在空间化特征上以空间方式进行空间化,之前的连续演动被迫学习空间特征制图,即地貌变异化。在这种方式中,几何信息可以通过分解特性的编码来详细解析本地点特征,而我们在这些固定结构数据上的三维演进不会因为嵌入空间中的氧化物化而受到影响。此外,我们提议一个空间关注模块,即本地立点注意(LSA),在本地点集中提供全面的结构意识,从而产生具有代表性的特征。通过学习与LSA的氧化物特征,C Convion-Con-Con-Con-cion-col-col-stal-cal-de-pal 部分,我们展示有高的Cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-dal-dal-cal-dal-dal-dal-daldaldal-dal-dal-daldaldaldaldaldaldaldal-dal-daldaldal-dal-dal-dal-d-daldaldal-d-d-d-dal-dal-dal-d-d-dal-d-d-dal-d-dal-dal-dal-d-d-dal-cal-cal-d-d-d-d-d-d-d-d-dal-cal-d-d-d-d-dal-cal-cal-cal-d-d-dal-dal-dal-dal-d-d-d-d-d-