In this paper, we investigate two graph convexity parameters: the iteration time and the general position number. Harary and Nieminem introduced in 1981 the iteration time in the geodesic convexity, but its computational complexity was still open. Manuel and Klav\v{z}ar introduced in 2018 the general position number of the geodesic convexity and proved that it is NP-hard to compute. In this paper, we extend these parameters to the P3 convexity and prove that it is NP-hard to compute them. With this, we also prove that the iteration number is NP-hard on the geodesic convexity even in graphs with diameter two. These results are the last three missing NP-hardness results regarding the ten most studied graph convexity parameters in the geodesic and P3 convexities.


翻译:在本文中,我们研究了两个图形凸性参数:迭代时间和通用位置数。Harary 和 Nieminem 在 1981 年引入了测地线凸性中的迭代时间,但其计算复杂度仍然未知。Manuel 和 Klav\v{z}ar 在 2018 年引入了测地线凸性的通用位置数,并证明其在 NP-hard。在本文中,我们将这些参数扩展到了 P3 凸性,并证明了计算它们是 NP-hard 的。此外,我们还证明在直径为二的图中,即使在测地线凸性中,它的迭代次数也是 NP-hard 的。这些结果是有关测地线凸性和 P3 凸性中最常研究的十个图形凸性参数中还缺失的最后三个 NP-hard 结果。

0
下载
关闭预览

相关内容

【简明书册】(随机)梯度方法的收敛定理手册,68页pdf
专知会员服务
39+阅读 · 2023年1月31日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
49+阅读 · 2022年2月19日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员