Human veins are important for carrying the blood from the body-parts to the heart. The improper functioning of the human veins may arise from several venous diseases. Varicose vein is one such disease wherein back flow of blood can occur, often resulting in increased venous pressure or restricted blood flow due to changes in the structure of vein. To examine the functional characteristics of the varicose vein, it is crucial to study the physical and bio mechanical properties of the vein. This work proposes a segmentation model Opto-UNet, for segmenting the venous wall structure. Optical Coherence Tomography system is used to acquire images of varicose vein. As the extracted vein is not uniform in shape, hence adequate method of segmentation is required to segment the venous wall. Opto-UNet model is based on the U-Net architecture wherein a new block is integrated into the architecture, employing atrous and separable convolution to extract spatially wide-range and separable features maps for attaining advanced performance. Furthermore, the depth wise separable convolution significantly reduces the complexity of the network by optimizing the number of parameters. The model achieves accuracy of 0.9830, sensitivity of 0.8425 and specificity of 0.9980 using 8.54 million number of parameters. These results indicate that model is highly adequate in segmenting the varicose vein wall without deteriorating the segmentation quality along with reduced complexity


翻译:人体血管对于将血液从身体部位输送到心脏很重要。 人体血管的不适当功能可能来自几种静脉疾病。 静脉是这种疾病之一, 血液的回流可能发生, 经常导致静脉结构的变化导致静脉压力增加或血液流受限制。 要研究静脉的功能特征, 研究静脉的物理和生物机械特性至关重要。 这项工作为隔开静脉壁结构, 提议了一个分解模式 Opto- UNet 。 光学一致性成像系统被用来获取变异性血管的图像。 由于抽取的静脉的形状不统一, 因此需要适当的分解方法来分割静脉壁。 Opto- UNet 模型基于U- Net 结构, 将一个新的块融入结构, 利用 强烈和 分解的混凝固的混凝固性能来提取空间宽度和可分解的特征图。 此外, 深度可分解的共变异性能系统系统被用来获取变异性血管的图像。 由于抽取的静脉, 抽取的静脉流的静态的静态不均匀性不均匀,因此需要用适当的分解法分解法分解法, 。 0.8584 模型的精度的精度的精度 的精确度 和精确度的精确度 。</s>

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年2月26日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员