We consider the task of solving generic inverse problems, where one wishes to determine the hidden parameters of a natural system that will give rise to a particular set of measurements. Recently many new approaches based upon deep learning have arisen generating impressive results. We conceptualize these models as different schemes for efficiently, but randomly, exploring the space of possible inverse solutions. As a result, the accuracy of each approach should be evaluated as a function of time rather than a single estimated solution, as is often done now. Using this metric, we compare several state-of-the-art inverse modeling approaches on four benchmark tasks: two existing tasks, one simple task for visualization and one new task from metamaterial design. Finally, inspired by our conception of the inverse problem, we explore a solution that uses a deep learning model to approximate the forward model, and then uses backpropagation to search for good inverse solutions. This approach, termed the neural-adjoint, achieves the best performance in many scenarios.
翻译:我们考虑的是解决一般性反向问题的任务,在这种任务中,人们希望确定自然系统的隐藏参数,从而产生一套特定的测量标准。最近,许多基于深层次学习的新办法产生了令人印象深刻的结果。我们将这些模型概念化为效率不同的计划,但随机地探索可能的反向解决办法的空间。因此,应该像现在经常做的那样,将每种方法的准确性评价为时间的函数,而不是单一的估计解决办法。我们用这一指标比较了四种基准任务上的一些最先进的反向建模方法:两种现有任务,一种简单的可视化任务,一种元材料设计的新任务。最后,根据我们对反向问题的构想,我们探索一种解决办法,利用深层次学习模型来接近前向模型,然后利用反向调整来寻找好的反向解决办法。这种方法称为神经-连接,在许多情景中取得最佳的绩效。