Reliable segmentation of retinal vessels can be employed as a way of monitoring and diagnosing certain diseases, such as diabetes and hypertension, as they affect the retinal vascular structure. In this work, we propose the Residual Spatial Attention Network (RSAN) for retinal vessel segmentation. RSAN employs a modified residual block structure that integrates DropBlock, which can not only be utilized to construct deep networks to extract more complex vascular features, but can also effectively alleviate the overfitting. Moreover, in order to further improve the representation capability of the network, based on this modified residual block, we introduce the spatial attention (SA) and propose the Residual Spatial Attention Block (RSAB) to build RSAN. We adopt the public DRIVE and CHASE DB1 color fundus image datasets to evaluate the proposed RSAN. Experiments show that the modified residual structure and the spatial attention are effective in this work, and our proposed RSAN achieves the state-of-the-art performance.
翻译:视网膜船只的可靠分离可用作监测和诊断某些疾病(如糖尿病和高血压)的一种方法,因为这些疾病影响到视网膜血管结构。在这项工作中,我们提议为视网膜船只分割采用残余空间注意网络(RSAN) 。RSAN使用一个经过修改的残余区块结构,其中结合了浮篮,不仅可以用来建造深层网络以提取更复杂的血管特征,而且还可以有效地减轻过分装配。此外,为了根据这个经过修改的残余区块,进一步提高网络的代表性能力,我们引入了空间注意(SA),并建议残余空间注意区(RSAB)以建立空间注意区(RSAN)。我们采用公共DIVIV和CHASE DB1颜色基金图像数据集来评价拟议的浮篮。实验表明,经过修改的残余结构和空间关注在这项工作中是有效的,我们拟议的区域网络实现了最先进的性能。