We present an effective way to predict search query-item relationship. We combine pre-trained transformer and LSTM models, and increase model robustness using adversarial training, exponential moving average, multi-sampled dropout, and diversity based ensemble, to tackle an extremely difficult problem of predicting against queries not seen before. All of our strategies focus on increasing robustness of deep learning models and are applicable in any task where deep learning models are used. Applying our strategies, we achieved 10th place in KDD Cup 2022 Product Substitution Classification task.
翻译:我们提出了预测搜索查询项目关系的有效方法。我们结合了预先培训的变压器和LSTM模型,并利用对抗性培训、指数移动平均、多抽样辍学和基于多样性的组合,提高模型的稳健性,以解决对以前未曾见过的询问作出预测这一极其困难的问题。我们的所有战略都侧重于提高深层次学习模型的稳健性,并适用于使用深层次学习模型的任何任务。我们运用了我们的战略,在KDD Cup 2022产品替代分类中达到了第10位。