We continue the investigation of Boolean-like algebras of dimension n (nBA) having n constants e1,...,en, and an (n+1)-ary operation q (a "generalised if-then-else") that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of nBAs share many remarkable properties with the variety of Boolean algebras and with primal varieties. Exploiting the concept of central element, we extend the notion of Boolean power to that of semiring power and we prove two representation theorems: (i) Any pure nBA is isomorphic to the algebra of n-central elements of a Boolean vector space; (ii) Any member of a variety of nBAs with one generator is isomorphic to a Boolean power of this generator. This gives a new proof of Foster's theorem on primal varieties.
翻译:我们继续调查具有n常数 e1,..., en 和 (n+1)-ary 操作 q (一个“通用当日离子 ” ) 且通过所谓的 n- 中央元素将代数分解成 n 系数。 nBA 的特性与 Boolean 代数和原始品种的种类有着许多不同寻常的特性。 探索核心元素的概念, 我们将布林力的概念扩展至半导力的概念, 我们证明两种代表理论:(一) 任何纯正正正正正正方形是布尔矢量空间正中元素的代数;(二) 拥有一台发电机的各类nBABA的任何成员都与这个发电机的布林力是无形态的。 这为Foster在原始品种上的理论提供了新的证据。