The Finite Selection Model (FSM) was developed by Carl Morris in the 1970s for the design of the RAND Health Insurance Experiment (HIE) (Morris 1979, Newhouse et al. 1993), one of the largest and most comprehensive social science experiments conducted in the U.S. The idea behind the FSM is that each treatment group takes its turns selecting units in a fair and random order to optimize a common criterion. At each of its turns, a treatment group selects the available unit that maximally improves the combined quality of its resulting group of units in terms of the criterion. In the HIE and beyond, we revisit, formalize, and extend the FSM as a general tool for experimental design. Leveraging the idea of D-optimality, we propose and analyze a new selection criterion in the FSM. The FSM using the D-optimal selection function has no tuning parameters, is affine invariant, and when appropriate retrieves several classical designs such as randomized block and matched-pair designs. For multi-arm experiments, we propose algorithms to generate a fair and random selection order of treatments. We demonstrate FSM's performance in a case study based on the HIE and in ten randomized studies from the health and social sciences. On average, the FSM achieves 68% better covariate balance than complete randomization and 56% better covariate balance than rerandomization in a typical study. We recommend the FSM be considered in experimental design for its conceptual simplicity, efficiency, balance, and robustness.


翻译:Carl Morris于1970年代为设计RAND健康保险实验(HIE)(Morris 1979年,Newhouse等人,1993年)开发了Finite选择模型(FSM),这是在美国进行的最大和最全面的社会科学实验之一。密克罗尼西亚联邦的构想是,每个治疗组轮流选择单位,以便优化一个共同标准。在每一转弯时,一个治疗组都选择了可用单位,按照标准最大限度地提高由此形成的单位组合的质量。在HAND健康保险实验(HIE)及以后,我们重新审视、正式确定和扩大FSM作为实验设计的一般工具。利用D-最优化的概念,我们在FSM中提出和分析一个新的选择标准。使用D-最优化选择功能的FSM没有调整参数。在每一个转弯曲中,当适当时,可以回收若干典型设计,如随机化块和匹配版设计。在多武器实验中,我们提议进行算法,以产生一个公平和随机的精准性选择,作为试验工具。在FSMMSM中,我们要从一个更好的设计中进行更好的业绩共同研究。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员