Most existing salient object detection (SOD) models are difficult to apply due to the complex and huge model structures. Although some lightweight models are proposed, the accuracy is barely satisfactory. In this paper, we design a novel semantics-guided contextual fusion network (SCFNet) that focuses on the interactive fusion of multi-level features for accurate and efficient salient object detection. Furthermore, we apply knowledge distillation to SOD task and provide a sizeable dataset KD-SOD80K. In detail, we transfer the rich knowledge from a seasoned teacher to the untrained SCFNet through unlabeled images, enabling SCFNet to learn a strong generalization ability to detect salient objects more accurately. The knowledge distillation based SCFNet (KDSCFNet) achieves comparable accuracy to the state-of-the-art heavyweight methods with less than 1M parameters and 174 FPS real-time detection speed. Extensive experiments demonstrate the robustness and effectiveness of the proposed distillation method and SOD framework. Code and data: https://github.com/zhangjinCV/KD-SCFNet.


翻译:由于模型结构复杂而庞大,很难应用大多数现有突出物体探测模型(SOD),虽然提出了一些轻量级模型,但准确性几乎不令人满意。在本文中,我们设计了一个新型语义引导背景聚合网络(SCFNet),重点是交互融合多层次特征,以便准确和高效地探测显著物体。此外,我们将知识蒸馏应用到SOD任务中,并提供数量可观的数据集KD-SOD80K。我们通过未加标记的图像,将老练教师的丰富知识传递给未受过训练的SCFNet,使SCFNet能够学习更精确地探测突出物体的强大通用能力。基于SCFNet(KDSCNet)的知识蒸馏方法的精度与最先进的重量方法相当,其参数小于1M,实时探测速度为174FPS。广泛的实验表明拟议的蒸馏方法和SOD框架的坚固性和有效性。代码和数据:https://github.com/zhanginCV/KD-SFSNet。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Fully Sparse 3D Object Detection
Arxiv
0+阅读 · 2022年10月3日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员