We present a basis for studying questions of cause and effect in statistics which subsumes and reconciles the models proposed by Pearl, Robins, Rubin and others, and which, as far as mathematical notions and notation are concerned, is entirely conventional. In particular, we show that, contrary to what several authors had thought, standard probability can be used to treat problems that involve notions of causality, and in a way not essentially different from the way it has been used in the area generally known (since the 1960s, at least) as 'applied probability'. Conventional, elementary proofs are given of some of the most important results obtained by the various schools of 'statistical causality', and a variety of examples considered by those schools are worked out in detail. Pearl's 'calculus of intervention' is examined anew, and its first two rules are formulated and proved by means of elementary probability for the first time since they were stated 25 years or so ago. Note: Corrected and extended parts of this paper will soon be published as a book of the same title.


翻译:我们提出了一个基础研究因果关系的统计学方法,它包含了Pearl、Robins、Rubin等人提出的各种模型,并且在数学概念和符号方面完全符合传统的规范。我们特别强调,与一些作者所认为的相反,标准概率可以用于处理牵涉到因果关系的问题,且在本质上与用于“应用概率”的学科领域没有本质的区别。我们提供了一些单一、基本的证明,证明了“统计因果关系”的各个分支取得的一些重要结果,并详细分析了这些分支研究中的一些典型案例。我们将重新审视Pearl的“干预计算法”,并且我们会首次使用简单的概率论证明该算法的首两条规则,自该规则被提出至今已有25年。注意:该论文的部分修正和扩展将很快出版成同名的书籍。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
23+阅读 · 2008年12月31日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
23+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员