The method of Chernoff approximation is a powerful and flexible tool of functional analysis that in many cases allows expressing exp(tL) in terms of variable coefficients of linear differential operator L. In this paper we prove a theorem that allows us to apply this method to find the resolvent of operator L. We demonstrate this on the second order differential operator. As a corollary, we obtain a new representation of the solution of an inhomogeneous second order linear ordinary differential equation in terms of functions that are the coefficients of this equation playing the role of parameters for the problem.
翻译:Chernoff近似法是功能分析的有力和灵活工具,在许多情况下,它允许用线性差分运商的可变系数表示表达表达(tL)值。 在本文件中,我们证明我们有一个理论,使我们能够运用这一方法找到操作商L.的坚定度。我们在第二顺序差差分运商上展示了这一点。作为必然结果,我们获得了一种新形式,从作为该等值的系数的函数中,从作为问题参数作用的函数的不对等的第二顺序普通线性差分方程的解决方法中得到了一种新的表述。