We propose a method of sufficient dimension reduction for functional data using distance covariance. We consider the case where the response variable is a scalar but the predictor is a random function. Our method has several advantages. It requires very mild conditions on the predictor, unlike the existing methods require the restrictive linear conditional mean assumption and constant covariance assumption. It also does not involve the inverse of the covariance operator which is not bounded. The link function between the response and the predictor can be arbitrary and our method maintains the model free advantage without estimating the link function. Moreover, our method is naturally applicable to sparse longitudinal data. We use functional principal component analysis with truncation as the regularization mechanism in the development. The justification for validity of the proposed method is provided and under some regularization conditions, statistical consistency of our estimator is established. Simulation studies and real data analysis are also provided to demonstrate the performance of our method.
翻译:我们建议使用远程共变法对功能性数据进行足够维度减少的方法。 我们考虑的是响应变量是一个卡路里但预测器是一个随机函数的情况。 我们的方法有若干优点。 我们的方法要求预测器有非常温和的条件,不同于现有方法,它要求限制性线性有条件假设和常态共变假设,也不涉及没有约束的共变操作器反向; 响应和预测器之间的联系功能可能是任意的, 我们的方法可以维持模型的免费优势, 而不估计链接功能。 此外, 我们的方法自然适用于稀疏的纵向数据。 我们使用功能性主元件分析作为发展中的正规化机制。 提供了拟议方法有效性的理由, 在某些正规条件下, 确定了我们估算器的统计一致性。 还提供模拟研究和真实数据分析,以证明我们方法的性能。</s>