Variational quantum algorithms (VQAs) utilize a hybrid quantum-classical architecture to recast problems of high-dimensional linear algebra as ones of stochastic optimization. Despite the promise of leveraging near- to intermediate-term quantum resources to accelerate this task, the computational advantage of VQAs over wholly classical algorithms has not been firmly established. For instance, while the variational quantum eigensolver (VQE) has been developed to approximate low-lying eigenmodes of high-dimensional sparse linear operators, analogous classical optimization algorithms exist in the variational Monte Carlo (VMC) literature, utilizing neural networks in place of quantum circuits to represent quantum states. In this paper we ask if classical stochastic optimization algorithms can be constructed paralleling other VQAs, focusing on the example of the variational quantum linear solver (VQLS). We find that such a construction can be applied to the VQLS, yielding a paradigm that could theoretically extend to other VQAs of similar form.
翻译:变化量子算法(VQAs)利用混合量子古典结构将高维线性线性代数问题重新定位为随机优化。 尽管有可能利用近中期量子资源加速这项任务, VQAs相对于完全古典算法的计算优势尚未牢固确立。 例如,虽然变异量量子单体(VQAs)已经发展到高维分散线性操作员的近似低地天体型,但在变异式蒙特卡洛(VMC)文献中也存在类似的古典优化算法,利用神经网络代替量子电路来代表量子状态。 本文我们问,能否将传统的静态优化算法建成与其他VQAs平行,重点是变异质量线性解算法(VQLS)的示例。 我们发现,这种构造可以适用于VQLS(VQLS),在理论上可以扩展到类似形式的其它VQA。