As a new research area, quantum software testing lacks systematic testing benchmarks to assess testing techniques' effectiveness. Recently, some open-source benchmarks and mutation analysis tools have emerged. However, there is insufficient evidence on how various quantum circuit characteristics (e.g., circuit depth, number of quantum gates), algorithms (e.g., Quantum Approximate Optimization Algorithm), and mutation characteristics (e.g., mutation operators) affect the most mutant detection in quantum circuits. Studying such relations is important to systematically design faulty benchmarks with varied attributes (e.g., the difficulty in detecting a seeded fault) to facilitate assessing the cost-effectiveness of quantum software testing techniques efficiently. To this end, we present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits. Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques. We also provide a tool to recommend mutants to users based on chosen characteristics (e.g., a quantum algorithm type) and the required difficulty of killing mutants. Finally, we also provide faulty benchmarks that can already be used to assess the cost-effectiveness of quantum software testing techniques.
翻译:暂无翻译