The goal of multimodal summarization is to extract the most important information from different modalities to form summaries. Unlike unimodal summarization, the multimodal summarization task explicitly leverages cross-modal information to help generate more reliable and high-quality summaries. However, existing methods fail to leverage the temporal correspondence between different modalities and ignore the intrinsic correlation between different samples. To address this issue, we introduce Align and Attend Multimodal Summarization (A2Summ), a unified multimodal transformer-based model which can effectively align and attend the multimodal input. In addition, we propose two novel contrastive losses to model both inter-sample and intra-sample correlations. Extensive experiments on two standard video summarization datasets (TVSum and SumMe) and two multimodal summarization datasets (Daily Mail and CNN) demonstrate the superiority of A2Summ, achieving state-of-the-art performances on all datasets. Moreover, we collected a large-scale multimodal summarization dataset BLiSS, which contains livestream videos and transcribed texts with annotated summaries. Our code and dataset are publicly available at ~\url{https://boheumd.github.io/A2Summ/}.
翻译:多式联运总和的目标是从不同模式中提取最重要的信息,形成摘要。与单式总和不同,多式联运总和任务明确利用跨式信息,帮助生成更可靠和高质量的摘要。然而,现有方法未能利用不同模式之间的时间对应,忽视不同样本之间的内在关联。为解决这一问题,我们引入了一个基于统一多式联运变压器(A2Summ)的模型,该模型可以有效地对准和处理多式联运输入。此外,我们提出了两个新的对比性损失,即对模范间和模版内相互关系的对比性损失。对两个标准视频总和数据集(TVSum和SumMe)和两个多式总和数据集(Daily Mail和CNNN)的广泛实验,显示了A2Summ的优势,在所有数据集中达到了最先进的状态性表现。此外,我们收集了一个大型多式联运总和数据集,其中包含活流视频和带有注释性摘要的转录文本。我们的代码和数据集在Summurbo/Amqsat。</s>