Level 5 Autonomous Driving, a technology that a fully automated vehicle (AV) requires no human intervention, has raised serious concerns on safety and stability before widespread use. The capability of understanding and predicting future motion trajectory of road objects can help AV plan a path that is safe and easy to control. In this paper, we propose a network architecture that parallelizes multiple convolutional neural network backbones and fuses features to make multi-mode trajectory prediction. In the 2020 ICRA Nuscene Prediction challenge, our model ranks 15th on the leaderboard across all teams.
翻译:5级自动驾驶是完全自动化的飞行器不需要人手干预的一种技术,在广泛使用之前引起了人们对安全和稳定的严重关切。理解和预测道路物体未来运动轨迹的能力可以帮助AV规划一条安全和易于控制的道路。在本文件中,我们建议建立一个网络结构,将多重革命性神经网络骨干和引信功能平行,以作出多模式轨迹预测。在2020年ICRA Nuscene预测挑战中,我们的模型在所有团队中排名第15位。