In this work, the novel task of detecting and classifying table tennis strokes solely using the ball trajectory has been explored. A single camera setup positioned in the umpire's view has been employed to procure a dataset consisting of six stroke classes executed by four professional table tennis players. Ball tracking using YOLOv4, a traditional object detection model, and TrackNetv2, a temporal heatmap based model, have been implemented on our dataset and their performances have been benchmarked. A mathematical approach developed to extract temporal boundaries of strokes using the ball trajectory data yielded a total of 2023 valid strokes in our dataset, while also detecting services and missed strokes successfully. The temporal convolutional network developed performed stroke recognition on completely unseen data with an accuracy of 87.155%. Several machine learning and deep learning based model architectures have been trained for stroke recognition using ball trajectory input and benchmarked based on their performances. While stroke recognition in the field of table tennis has been extensively explored based on human action recognition using video data focused on the player's actions, the use of ball trajectory data for the same is an unexplored characteristic of the sport. Hence, the motivation behind the work is to demonstrate that meaningful inferences such as stroke detection and recognition can be drawn using minimal input information.


翻译:在这项工作中,探索了仅使用球轨探测和分类台球网球中风的新任务。在裁判员看来,已使用一个单一的摄像装置来采购由四个专业球员执行的六个中风班组成的数据集。球跟踪使用传统天体探测模型YOLOv4和ThontNetv2,一个以时间热映射为基础的模型,在我们的数据集上实施,其性能已经基准化。在利用球轨数据提取划线时间界限的数学方法中,我们的数据集共得出了2023个有效划线,同时还成功地探测了服务和中风。时间变迁网络对完全看不见的数据进行了中风识别,精确度达到87.155 %。一些基于模型的机器学习和深层学习结构已经经过培训,以便使用球轨迹输入进行中风识别,并根据它们的业绩基准进行基准。在利用以球轨迹为主的视频数据进行人类动作识别的基础上,广泛探索了球轨数据,从而得出了2023个有效划线球轨数据,同时也成功探测了服务和中划漏了中划。在运动后进行有意义的识别的特征。因此,可以进行最起码的动力测量。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员