Most dialog systems posit that users have figured out clear and specific goals before starting an interaction. For example, users have determined the departure, the destination, and the travel time for booking a flight. However, in many scenarios, limited by experience and knowledge, users may know what they need, but still struggle to figure out clear and specific goals by determining all the necessary slots. In this paper, we identify this challenge and make a step forward by collecting a new human-to-human mixed-type dialog corpus. It contains 5k dialog sessions and 168k utterances for 4 dialog types and 5 domains. Within each session, an agent first provides user-goal-related knowledge to help figure out clear and specific goals, and then help achieve them. Furthermore, we propose a mixed-type dialog model with a novel Prompt-based continual learning mechanism. Specifically, the mechanism enables the model to continually strengthen its ability on any specific type by utilizing existing dialog corpora effectively.
翻译:多数对话系统都假设用户在开始互动之前已经找到了明确和具体的目标。 例如, 用户已经确定了飞行的出发时间、 目的地和旅行时间。 但是, 在许多情况下, 用户可能知道他们需要什么, 但是仍然在通过确定所有必要的空档来努力找出明确和具体的目标。 在本文件中, 我们确定了这一挑战, 通过收集一个新的人与人之间混合型的对话框来向前迈出一步。 它包含 5k 对话框 和 168k 语句, 用于 4 个对话框类型和 5 个域 。 在每次会议中, 代理商首先提供与用户目标相关的知识, 帮助找出清晰和具体目标, 然后帮助实现这些目标。 此外, 我们提出了一个混合型对话模式, 并有一个全新的快速持续学习机制。 具体而言, 该机制使得模型能够通过有效地利用现有的对话框来不断加强其在任何特定类型上的能力 。