This paper presents a new data-driven framework for analyzing periodic physical human-robot interaction (pHRI) in latent state space. To elaborate human understanding and/or robot control during pHRI, the model representing pHRI is critical. Recent developments of deep learning technologies would enable us to learn such a model from a dataset collected from the actual pHRI. Our framework is developed based on variational recurrent neural network (VRNN), which can inherently handle time-series data like one pHRI generates. This paper modifies VRNN in order to include the latent dynamics from robot to human explicitly. In addition, to analyze periodic motions like walking, we integrate a new recurrent network based on reservoir computing (RC), which has random and fixed connections between numerous neurons, with VRNN. By augmenting RC into complex domain, periodic behavior can be represented as the phase rotation in complex domain without decaying the amplitude. For verification of the proposed framework, a rope-rotation/swinging experiment was analyzed. The proposed framework, trained on the dataset collected from the experiment, achieved the latent state space where the differences in periodic motions can be distinguished. Such a well-distinguished space yielded the best prediction accuracy of the human observations and the robot actions. The attached video can be seen in youtube: https://youtu.be/umn0MVcIpsY
翻译:本文展示了一个新的数据驱动框架, 用于分析潜伏状态空间中的定期人体- 机器人物理互动(pHRI) 。 为了在 PHRI 中阐述人类的理解和/或机器人控制, 代表 PHRI 的模型至关重要。 最近深层次学习技术的发展将使我们能够从从从实际的pHRI 中收集的数据集中学习这样的模型。 我们的框架建立在变异的经常性神经网络( VRNN) 的基础上, 它本可以处理像一个pHRI 产生的时间序列数据。 本文对 VRNN 进行了修改, 以便将机器人到人类的潜在动态明确纳入其中。 此外, 为了分析行走等周期性动作, 我们整合了一个基于储油量计算(RC)的新的经常性网络, 该网络与VRNNN 有随机和固定的连接。 通过将RC 提升到复杂的域, 定期行为可以作为复杂域中的阶段性旋转, 而不会腐蚀振动。 为了核实拟议的框架, 绳罗调/ 滚动实验得到了分析。 拟议的框架, 在从实验中收集的数据集中培训, 实现了最隐性空间空间状态, 在定期运动中, 的观测中可以区分。 。 这样的机器人/ 选择 。 。 将 。 将 将 将 将 将 将 将 放大动作 将 将 放大的 放大 。