We introduce a method for learning minimal-dimensional dynamical models from high-dimensional time series data that lie on a low-dimensional manifold, as arises for many processes. For an arbitrary manifold, there is no smooth global coordinate representation, so following the formalism of differential topology we represent the manifold as an atlas of charts. We first partition the data into overlapping regions. Then undercomplete autoencoders are used to find low-dimensional coordinate representations for each region. We then use the data to learn dynamical models in each region, which together yield a global low-dimensional dynamical model. We apply this method to examples ranging from simple periodic dynamics to complex, nominally high-dimensional non-periodic bursting dynamics of the Kuramoto-Sivashinsky equation. We demonstrate that it: (1) can yield dynamical models of the lowest possible dimension, where previous methods generally cannot; (2) exhibits computational benefits including scalability, parallelizability, and adaptivity; and (3) separates state space into regions of distinct behaviours.
翻译:我们引入了一种方法,从高维时间序列数据中学习存在于许多过程产生的低维多元体上的最低维度动态模型。 对于任意的多元体来说,没有光滑的全球协调代表,因此根据不同地形的形式主义,我们代表了多元的图集。我们首先将数据分解到重叠的区域。然后,不完全的自动编码器用于为每个区域寻找低维协调表示法。然后,我们利用数据学习每个区域动态模型,这些模型共同产生一个全球低维度动态模型。我们将这种方法应用到从简单的周期动态到复杂的、名义上高维的非周期爆发动态等例子中。我们证明:(1) 在以往方法通常无法做到的地方,可以产生最低维度的动态模型;(2) 展示计算效益,包括可伸缩性、可平行性和适应性;(3) 将状态空间分离到不同的行为区域。