Tactile sensing is an essential perception for robots to complete dexterous tasks. As a promising tactile sensing technique, vision-based tactile sensors have been developed to improve robot performance in manipulation and grasping. Here we propose a new design of vision-based tactile sensor, DelTact, with its high-resolution sensing abilities of surface contact measurement. The sensor uses a modular hardware architecture for compactness whilst maintaining a robust overall design. Moreover, it adopts an improved dense random color pattern based on the previous version to achieve high accuracy of contact deformation tracking. In particular, we optimize the color pattern generation process and select the appropriate pattern for coordinating with a dense optical flow algorithm in a real-world experimental sensory setting using various objects for contact. The optical flow obtained from the raw image is processed to determine shape and force distribution on the contact surface. This sensor can be easily integrated with a parallel gripper where experimental results using qualitative and quantitative analysis demonstrate that the sensor is capable of providing tactile measurements with high temporal and spatial resolution.
翻译:触觉感测是机器人完成极差任务的基本感知。 作为一种很有希望的触觉感测技术, 已经开发了基于视觉的触觉感应器, 以提高机器人在操作和捕捉方面的性能。 我们在这里提出了基于视觉的触觉感应器的新设计, DelTact, 及其地表接触测量的高分辨率感应能力。 感应器使用模块化硬件结构来保持紧凑性, 同时保持稳健的整体设计。 此外, 它根据前一版采用改良的密度随机颜色模式, 以达到接触变形跟踪的高度精确性。 特别是, 我们优化颜色模式生成过程, 并选择合适的模式, 在现实世界实验传感器设置中与密集的光学流算法进行协调, 使用各种接触对象。 从原始图像获得的光流经过处理, 以确定接触表面的形状和强度分布。 这个感应很容易与平行的控制器结合, 使用定性和定量分析的实验结果证明传感器能够提供高时空分辨率的触觉度测量。