We study data-driven assistants that provide congestion forecasts to users of shared facilities (roads, cafeterias, etc.), to support coordination between them, and increase efficiency of such collective systems. Key questions are: (1) when and how much can (accurate) predictions help for coordination, and (2) which assistant algorithms reach optimal predictions? First we lay conceptual ground for this setting where user preferences are a priori unknown and predictions influence outcomes. Addressing (1), we establish conditions under which self-fulfilling prophecies, i.e., "perfect" (probabilistic) predictions of what will happen, solve the coordination problem in the game-theoretic sense of selecting a Bayesian Nash equilibrium (BNE). Next we prove that such prophecies exist even in large-scale settings where only aggregated statistics about users are available. This entails a new (nonatomic) BNE existence result. Addressing (2), we propose two assistant algorithms that sequentially learn from users' reactions, together with optimality/convergence guarantees. We validate one of them in a large real-world experiment.
翻译:我们研究由数据驱动的助理,向共用设施(公路、自助餐厅等)的用户提供拥堵预测,以支持它们之间的协调,并提高这类集体系统的效率。关键问题是:(1) 何时和多少(准确)预测能有助于协调,(2) 哪些辅助算法能达到最佳预测?首先,我们为这种环境奠定了概念基础,在这一环境中,用户偏好是先验的未知因素,预测影响结果。处理(1) 我们建立各种条件,使自我实现预言,即“完美”(预测)预测会发生什么事情,解决选择巴伊西亚纳什平衡(BNE)的游戏理论意义上的协调问题。接下来,我们证明即使在只有关于用户的综合统计数据的大型环境中,这种预言也存在。这需要一个新的(非原子)BNE存在结果。处理(2) 我们提出两种辅助算法,从用户的反应中依次学习,同时提供最佳/一致保证。我们在一个大型现实世界实验中验证其中的一种。