In this paper, the performance of a dual-hop relaying terahertz (THz) wireless communication system is investigated. In particular, the behaviors of the two THz hops are determined by three factors, which are the deterministic path loss, the fading effects, and pointing errors. Assuming that both THz links are subject to the $\alpha$-$\mu$ fading with pointing errors, we derive exact expressions for the cumulative distribution function (CDF) and probability density function (PDF) of the end-to-end signal-to-noise ratio (SNR). Relying on the CDF and PDF, important performance metrics are evaluated, such as the outage probability, average bit error rate, and average channel capacity. Moreover, the asymptotic analyses are presented to obtain more insights. Results show that the dual-hop relaying scheme has better performance than the single THz link. The system's diversity order is $\min\left\{\frac{\phi_1}{2},\frac{\alpha_1\mu_1}{2},\phi_2,\alpha_2\mu_2\right\}$, where $\alpha_i$ and $\mu_i$ represent the fading parameters of the $i$-th THz link for $i\in(1,2)$, and $\phi_i$ denotes the pointing error parameter. In addition, we extend the analysis to a multi-relay cooperative system and derive the asymptotic symbol error rate expressions. Results demonstrate that the diversity order of the multi-relay system is $K\min\left\{\frac{\phi_1}{2},\frac{\alpha_1\mu_1}{2},\phi_2,\alpha_2\mu_2\right\}$, where $K$ is the number of relays. Finally, the derived analytical expressions are verified by Monte Carlo simulation.
翻译:本文调查了双速中继 terahertz (Thz) 无线通信系统的性能。 特别是, 两个 THz 跳的动作是由三个因素决定的, 这三个因素是确定性路径丢失、 衰减效果和指向错误。 假设两个 THz 链接都受制于 $\ pha$- $\ mumu 美元( 指针错误), 我们为 累积分布函数( CDF) 和概率密度函数( PDF) 的精确表达方式。 以 CDF 和 PDF 重看 CDF 和 PDF, 重要的业绩尺度, 例如断差概率、 平均位错误率和平均频道能力。 此外, 提供的系统分析结果显示, 双速中继机制的性能优于单个THThz 链接。 系统的多样性顺序是 $\\ leftreleflex leadal_ $_ $_ $_ 美元( 美元), 美元=2\\\\\\\\\\\\\\\ ma\ y y y rodeal y y y y max, 美元( 美元) maxxx 美元、 美元、 美元= 美元=xxxxxxxxxxxxxx 美元=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx