Identifying the instances of jumps in a discrete time series sample of a jump diffusion model is a challenging task. We have developed a novel statistical technique for jump detection and volatility estimation in a return time series data using a threshold method. Since we derive the threshold and the volatility estimator simultaneously by solving an implicit equation, we obtain unprecedented accuracy across a wide range of parameter values. Using this method, the increments attributed to jumps have been removed from a large collection of historical data of Indian sectorial indices. Subsequently, we test the presence of regime switching dynamics in the volatility coefficient using a new discriminating statistic. The statistic is shown to be sensitive to the transition kernel of the regime switching model. We perform the testing using bootstrap method and find a clear indication of presence of multiple regimes of volatility in the data.
翻译:确定跳跃扩散模型独立时间序列样本中的跳跃实例是一项具有挑战性的任务。我们开发了一种新的统计技术,用于在使用阈值的回流时间序列数据中进行跳跃探测和波动估计。由于我们同时通过解决隐含方程式得出阈值和波动估计值,我们获得了各种参数值的空前准确性。使用这种方法,从大量收集的印度部门指数历史数据中删除了因跳跃造成的增量。随后,我们使用新的歧视性统计来测试波动系数中是否存在制度转换动态。统计数据显示对系统转换模型的过渡内核十分敏感。我们使用靴套方法进行测试,并发现数据中存在多种波动制度的明显迹象。