Federated learning allows multiple parties to collaboratively train a joint model without sharing local data. This enables applications of machine learning in settings of inherently distributed, undisclosable data such as in the medical domain. In practice, joint training is usually achieved by aggregating local models, for which local training objectives have to be in expectation similar to the joint (global) objective. Often, however, local datasets are so small that local objectives differ greatly from the global objective, resulting in federated learning to fail. We propose a novel approach that intertwines model aggregations with permutations of local models. The permutations expose each local model to a daisy chain of local datasets resulting in more efficient training in data-sparse domains. This enables training on extremely small local datasets, such as patient data across hospitals, while retaining the training efficiency and privacy benefits of federated learning.


翻译:联邦学习允许多个方面合作培训联合模型,但不分享当地数据。这样可以让机器学习在医疗领域等内在分布的、不可披露的数据环境中应用。在实践中,联合培训通常是通过汇集当地模型来实现的,而当地培训目标必须与联合(全球)目标相似。然而,地方数据集往往太小,以致地方目标与全球目标大相径庭,导致联合学习失败。我们提出了一种新颖的办法,将模型聚合与本地模型互换。这种调整使每个地方模型都暴露于一个本地数据集的时空链中,从而在数据扭曲领域进行更有效的培训。这使得培训能够进行极小的当地数据集,如医院之间的病人数据,同时保留了联邦学习的培训效率和隐私效益。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
17+阅读 · 2021年2月15日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2019年4月19日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
17+阅读 · 2021年2月15日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2019年4月19日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Top
微信扫码咨询专知VIP会员