This work revolves around the two following questions: Given a convex body $C\subset\mathbb{R}^d$, a positive integer $k$ and a finite set $S\subset\mathbb{R}^d$ (or a finite Borel measure $\mu$ on $\mathbb{R}^d$), how many homothets of $C$ are required to cover $S$ if no homothet is allowed to cover more than $k$ points of $S$ (or have measure larger than $k$)? How many homothets of $C$ can be packed if each of them must cover at least $k$ points of $S$ (or have measure at least $k$)? We prove that, so long as $S$ is not too degenerate, the answer to both questions is $\Theta_d(\frac{|S|}{k})$, where the hidden constant is independent of $d$. This is optimal up to a multiplicative constant. Analogous results hold in the case of measures. Then we introduce a generalization of the standard covering and packing densities of a convex body $C$ to Borel measure spaces in $\mathbb{R}^d$ and, using the aforementioned bounds, we show that they are bounded from above and below, respectively, by functions of $d$. As an intermediate result, we give a simple proof the existence of weak $\epsilon$-nets of size $O(\frac{1}{\epsilon})$ for the range space induced by all homothets of $C$. Following some recent work in discrete geometry, we investigate the case $d=k=2$ in greater detail. We also provide polynomial time algorithms for constructing a packing/covering exhibiting the $\Theta_d(\frac{|S|}{k})$ bound mentioned above in the case that $C$ is an Euclidean ball. Finally, it is shown that if $C$ is a square then it is NP-hard to decide whether $S$ can be covered using $\frac{|S|}{4}$ squares containing $4$ points each.


翻译:这项工作围绕以下两个问题进行 : 如果一个正折体 $C\ subset\ mathb{R ⁇ d$, 一个正整数美元, 一个限定的美元S\ subset\ mathb{R ⁇ d$ (或一个有限的波列计量 $mu$, 美元=mathbb{R ⁇ d$, 如果不允许任何同质体覆盖超过美元( 美元) $S (或测量值大于美元)? 如果每张正整数美元, 一个正整数的美元美元, 一个固定的美元, 一个固定的美元, 一个固定的基数, 一个固定的基数, 一个固定的基数, 一个固定的基数, 一个固定的基数, 一个普通的基数, 一个普通的基数, 一个普通的基数, 一个固定的基数, 一个固定的基数, 一个固定的基数, 一个固定的基数。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月5日
Arxiv
0+阅读 · 2023年2月4日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员