In 1946, Erd\H{o}s posed the distinct distance problem, which seeks to find the minimum number of distinct distances between pairs of points selected from any configuration of $n$ points in the plane. The problem has since been explored along with many variants, including ones that extend it into higher dimensions. Less studied but no less intriguing is Erd\H{o}s' distinct angle problem, which seeks to find point configurations in the plane that minimize the number of distinct angles. In their recent paper "Distinct Angles in General Position," Fleischmann, Konyagin, Miller, Palsson, Pesikoff, and Wolf use a logarithmic spiral to establish an upper bound of $O(n^2)$ on the minimum number of distinct angles in the plane in general position, which prohibits three points on any line or four on any circle. We consider the question of distinct angles in three dimensions and provide bounds on the minimum number of distinct angles in general position in this setting. We focus on pinned variants of the question, and we examine explicit constructions of point configurations in $\mathbb{R}^3$ which use self-similarity to minimize the number of distinct angles. Furthermore, we study a variant of the distinct angles question regarding distinct angle chains and provide bounds on the minimum number of distinct chains in $\mathbb{R}^2$ and $\mathbb{R}^3$.
翻译:1946年, Erd\H{H{o} 提出了截然不同的距离问题, 试图找到从平面上任何配置的美元点数中选择的对点之间不同距离的最小数量。 自此以后, 这个问题与许多变量一起被探讨过, 包括将其扩展至更高维度的变量。 研究较少但同样令人感兴趣的是Erd\H{H{o} 的独特角度问题, 它试图在平面上找到点配置, 以尽量减少不同角度的数量。 在其最近的论文“ 通用位置中的Distinct Agles” 中, Fleischmann、 Konyagin、 Miller、 Palsson、 Pesikoff 和 Wolf 中, 使用对正对数螺旋螺旋螺旋, 在平面上的最小值值为$(n2) $(n) $(n)2) 。 禁止任意线上的任何一行或四个角度上的三个点配置。 我们考虑三个维特角度的问题,, 并提供了本环境上不同角度的最低角度的最小数目 。 我们集中研究问题, 在不同的角度上, 最清晰角度中, 的自我定义中, 。