In this work we propose a discretization of the second boundary condition for the Monge-Ampere equation arising in geometric optics and optimal transport. The discretization we propose is the natural generalization of the popular Oliker-Prussner method proposed in 1988. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.
翻译:在这项工作中,我们建议对蒙古-安培方程式的第二个边界条件进行分解,这些条件产生于几何光学和最佳运输中。我们提议的分解是1988年提出的流行的奥立克-普鲁斯纳方法的自然概括化。对于差异经营者的分解,我们使用一个分解的离异类。对离散问题的解决办法的存在、一致性和稳定性得到了确定。对持续的问题产生了一致的结果。