Given a dynamic graph stream, how can we detect the sudden appearance of anomalous patterns, such as link spam, follower boosting, or denial of service attacks? Additionally, can we categorize the types of anomalies that occur in practice, and theoretically analyze the anomalous signs arising from each type? In this work, we propose AnomRank, an online algorithm for anomaly detection in dynamic graphs. AnomRank uses a two-pronged approach defining two novel metrics for anomalousness. Each metric tracks the derivatives of its own version of a 'node score' (or node importance) function. This allows us to detect sudden changes in the importance of any node. We show theoretically and experimentally that the two-pronged approach successfully detects two common types of anomalies: sudden weight changes along an edge, and sudden structural changes to the graph. AnomRank is (a) Fast and Accurate: up to 49.5x faster or 35% more accurate than state-of-the-art methods, (b) Scalable: linear in the number of edges in the input graph, processing millions of edges within 2 seconds on a stock laptop/desktop, and (c) Theoretically Sound: providing theoretical guarantees of the two-pronged approach.
翻译:在动态图表流中, 我们如何检测异常模式的突然外观, 如链接垃圾、 跟踪器助推或拒绝服务攻击等? 此外, 我们能否对实际中出现的异常类型进行分类, 并从理论上分析每种类型的异常迹象? 在这项工作中, 我们提出 AnomRank, 用于动态图形中异常检测的在线算法 。 AnomRank 使用双管齐下的方法, 定义两种异常现象的新指标。 每个指标都跟踪其“ 结点评分( 或节点重要性) ” 功能版本的衍生物。 这使我们能够检测任何节点重要性的突然变化。 我们从理论上和实验上显示, 双管齐下的方法成功检测出两种常见的异常类型: 边缘的突然重量变化, 以及图形的突然结构变化 。 AnomRank 是 (a) 快速和准确度: 最高至49.5x 或比最新设计方法更准确35 % 。 (b) 可升级: 在任何节点的边缘的线性变化中, 双轨方法中提供双向的双向的理论平台/ 。