Stochastic Block Models (SBMs) are a fundamental tool for community detection in network analysis. But little theoretical work exists on the statistical performance of Bayesian SBMs, especially when the community count is unknown. This paper studies a special class of SBMs whose community-wise connectivity probability matrix is diagonally dominant, i.e., members of the same community are more likely to connect with one another than with members from other communities. The diagonal dominance constraint is embedded within an otherwise weak prior, and, under mild regularity conditions, the resulting posterior distribution is shown to concentrate on the true community count and membership allocation as the network size grows to infinity. A reversible-jump Markov Chain Monte Carlo posterior computation strategy is developed by adapting the allocation sampler of Mcdaid et al (2013). Finite sample properties are examined via simulation studies in which the proposed method offers competitive estimation accuracy relative to existing methods under a variety of challenging scenarios.
翻译:软盘模型(SBMs)是网络分析中社区检测的基本工具,但关于巴伊西亚光学系统统计绩效的理论工作很少,特别是当社区数量不详时。本文研究的是一类特殊SBMs, 其社区智慧连接概率矩阵具有对数支配性,即同一社区的成员比其他社区的成员更有可能相互连接。对角板主控制约植根于先前的薄弱环节,在温和的常规条件下,由此产生的后方分布显示,随着网络规模逐步扩大,将侧重于真正的社区数量和成员分配。通过调整Mcdaid等人(2013年)的分配样本,开发了可逆-可逆的Markov链 Markov 链 Monte Carlo postior计算战略。通过模拟研究,对Finite样本特性进行了研究,在模拟研究中,拟议方法在各种富有挑战的假设情景下,为现有方法提供了竞争性的估计准确性。