We address the problem of estimating time and frequency shifts of a known waveform in the presence of multiple measurement vectors (MMVs). This problem naturally arises in radar imaging and wireless communications. Specifically, a signal ensemble is observed, where each signal of the ensemble is formed by a superposition of a small number of scaled, time-delayed, and frequency shifted versions of a known waveform sharing the same continuous-valued time and frequency components. The goal is to recover the continuous-valued time-frequency pairs from a small number of observations. In this work, we propose a semidefinite programming which exactly recovers $s$ pairs of time-frequency shifts from $L$ regularly spaced samples per measurement vector under a minimum separation condition between the time-frequency shifts. Moreover, we prove that the number $s$ of time-frequency shifts scales linearly with the number $L$ of samples up to a log-factor. Extensive numerical results are also provided to validate the effectiveness of the proposed method over the single measurement vectors (SMVs) problem. In particular, we find that our approach leads to a relaxed minimum separation condition and reduced number of required samples.


翻译:在多个测量矢量(MMVs)存在的情况下,我们处理对已知波形的时间和频率变化的估计问题。这个问题自然出现在雷达成像和无线通信中。具体地说,观测到一个信号组合,其中共聚物的每个信号都是由少量的缩放、时间延迟和频率变化组合的叠加而成的,这些波形共享相同的连续价值时间和频率组成部分。目标是从少量的观测中恢复连续定值的时间-频率配对。在这项工作中,我们提议一个半定式编程,在时间-频率变化之间的最小分离条件下,从每个测量矢量的定期空间移动样本中,完全回收美元对时间-频率变化的配对。此外,我们还证明时间-频率移动比例的金额是美元,以直线方式计算到一个日志-要素的样本数。还提供了广泛的数字结果,以证实拟议方法在单一测量矢量(SMVs)问题上的有效性。我们发现,我们的方法导致最低分离条件的放松,所需样品数量减少。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员