We present a method to estimate two-dimensional, time-invariant oceanic flow fields based on data from both ensemble forecasts and online measurements. Our method produces a realistic estimate in a computationally efficient manner suitable for use in marine robotics for path planning and related applications. We use kernel methods and singular value decomposition to find a compact model of the ensemble data that is represented as a linear combination of basis flow fields and that preserves the spatial correlations present in the data. Online measurements of ocean current, taken for example by marine robots, can then be incorporated using recursive Bayesian estimation. We provide computational analysis, performance comparisons with related methods, and demonstration with real-world ensemble data to show the computational efficiency and validity of our method. Possible applications in addition to path planning include active perception for model improvement through deliberate choice of measurement locations.
翻译:我们提出一种方法,根据来自共同预测和在线测量的数据来估计二维、时间变化的海洋流场。我们的方法以适用于海洋机器人用于路径规划和相关应用的计算有效方式,提出一个现实的估计。我们使用内核方法和单值分解方法,寻找集合数据的紧凑模型,该模型代表基础流场的线性组合,并保存数据中存在的空间相关性。海洋流的在线测量,例如海洋机器人的在线测量,然后可以使用回溯性贝叶西亚估计进行整合。我们提供计算分析,用相关方法进行性能比较,并演示真实世界的共性数据,以显示我们方法的计算效率和有效性。除了路径规划外,可能的应用还包括通过有意选择测量地点对模型进行改进的积极认识。