We study a distributed sampling problem where a set of processors want to output (approximately) independent and identically distributed samples from a joint distribution with the help of a common message from a coordinator. Each processor has access to a subset of sources from a set of independent sources of "shared" randomness. We consider two cases -- in the "omniscient coordinator setting", the coordinator has access to all these sources of shared randomness, while in the "oblivious coordinator setting", it has access to none. All processors and the coordinator may privately randomize. In the omniscient coordinator setting, when the subsets at the processors are disjoint (individually shared randomness model), we characterize the rate of communication required from the coordinator to the processors over a multicast link. For the two-processor case, the optimal rate matches a special case of relaxed Wyner's common information proposed by Gastpar and Sula [IEEE Information Theory Workshop, 2019] thereby providing an operational meaning to the latter. We also give an upper bound on the communication rate for the "randomness-on-the-forehead" model where each processor observes all but one source of randomness and we give an achievable strategy in the omniscient coordinator setting for the general case where the processors have access to arbitrary subsets of sources of randomness. Also, we consider a more general model where the processors observe components of correlated sources (with the coordinator observing all the components), where we characterize the communication rate when all the processors wish to output the same random sequence. In the oblivious coordinator setting, we completely characterize the trade-off region between the communication and shared randomness rates for the general case where the processors have access to arbitrary subsets of sources of randomness.


翻译:我们研究一个分布式抽样问题, 一组处理器想要在协调员的共同信息帮助下从联合分发中输出( 约) 独立和同样分布的样本。 每个处理器都可以从一组独立的“ 共享” 随机性来源获得一组来源的通信。 我们考虑两个案例—— 在“ 未知的协调器设置” 中, 协调员可以获取所有这些共享随机性来源, 在“ 明显的协调器设置” 中, 协调员可以访问所有这些来源, 而“ 明显的协调器设置 ”, 所有处理器和协调员都可以私下随机地进行。 在无意识的协调员设置中, 当处理器的子组分分脱节性( 单独共享随机性模式) 时, 每个处理器都可以从协调员到多个处理器的独立源的通信速度。 在两种处理器中, 最佳的通信率符合一个特例, 即Wyner的共享随机性源, 而在“ 共享- 共享- 共享- 随机性流程” 模型中, 我们可以将所有通性交易源的通信速性数据连接到总操作器 。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
已删除
将门创投
3+阅读 · 2017年10月27日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
1+阅读 · 2021年1月20日
VIP会员
相关VIP内容
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
已删除
将门创投
3+阅读 · 2017年10月27日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Top
微信扫码咨询专知VIP会员