This paper discusses experimental design for inference and estimation of individualized treatment allocation rules in the presence of unknown interference. We consider a setting where units are organized into large, finitely many independent clusters and interact over unobserved dimensions within each cluster. The contribution of this paper is two-fold. First, we design a short pilot study with few clusters to test whether there exists a welfare-improving treatment configuration and hence worth learning by conducting a larger scale experiment. We propose a practical test that uses information on the marginal effect of the policy on welfare to compare the base-line intervention against any possible alternative. Second, we introduce a sequential randomization procedure to estimate welfare-maximizing individual treatment allocation rules valid under unobserved (and partial) interference. We propose non-parametric estimators of direct treatments and marginal spillover effects, which serve for hypothesis testing and policy-design. We derive the estimators' asymptotic properties, and small sample regret guarantees of the policy estimated through the sequential experiment. Finally, we illustrate the method's advantage in simulations calibrated to an existing experiment on information diffusion.
翻译:本文讨论了在出现未知干扰的情况下对个别治疗分配规则进行推断和估计的实验性设计; 我们考虑将单位组织成大型、 有限数目的独立组群, 并在每个组群内对未观测到的层面进行互动。 本文的贡献是双重的。 首先, 我们设计了一个简短的实验性研究, 有几个组群, 以测试是否存在福利改善治疗的配置, 因此值得通过进行更大规模的实验来学习。 我们提出一个实际的试验, 使用关于福利政策边际效应的信息来比较基准线干预与任何可能的选择。 其次, 我们引入一个顺序随机化程序, 来估计福利最大化的个人治疗分配规则, 这些规则在不受观察( 和部分) 干扰的情况下有效。 我们提出直接治疗和边际外溢效应的非单数估计性估计, 用于假设性测试和政策设计。 我们从测算出测算者对测算的政策的随机特性, 和通过测算的少量抽样遗憾保证。 最后, 我们说明在模拟对现有信息传播实验进行校准时的方法的优点。