The Poisson equation is critical to get a self-consistent solution in plasma fluid simulations used for Hall effect thrusters and streamers discharges. Solving the 2D Poisson equation with zero Dirichlet boundary conditions using a deep neural network is investigated using multiple-scale architectures, defined in terms of number of branches, depth and receptive field. The latter is found critical to correctly capture large topological structures of the field. The investigation of multiple architectures, losses, and hyperparameters provides an optimum network to solve accurately the steady Poisson problem. Generalization to new resolutions and domain sizes is then proposed using a proper scaling of the network. Finally, found neural network solver, called PlasmaNet, is coupled with an unsteady Euler plasma fluid equations solver. The test case corresponds to electron plasma oscillations which is used to assess the accuracy of the neural network solution in a time-dependent simulation. In this time-evolving problem, a physical loss is necessary to produce a stable simulation. PlasmaNet is then benchmarked on meshes with increasing number of nodes, and compared with an existing solver based on a standard linear system algorithm for the Poisson equation. It outperforms the classical plasma solver, up to speedups 700 times faster on large meshes. PlasmaNet is finally tested on a more complex case of discharge propagation involving chemistry and advection. The guidelines established in previous sections are applied to build the CNN to solve the same Poisson equation but in cylindrical coordinates. Results reveal good CNN predictions with significant speedup. These results pave the way to new computational strategies to predict unsteady problems involving a Poisson equation, including configurations with coupled multiphysics interactions such as in plasma flows.
翻译:Poisson 方程式对于在用于 Hall 效果推进器和流流体排放的等离子体液模拟中找到一个自我一致的解决方案至关重要。 使用深神经网络来用深神经网络用零 Dirichlet 边界条件解决 2D Poisson 方程式。 使用一个不稳定的 Euler 等离子体等离子方程式来调查使用深神经网络 。 发现后者对于正确捕捉外地的大型表层结构至关重要。 对多个结构、 损耗和超参数的调查为准确解决稳健的 Poisson 方程式问题提供了一个最佳的网络。 然后, 使用适当的网络缩放来建议对新分辨率和域大小进行概括化。 最后, 找到一个神经网络解分解的解码, 称为 Plasmanet, 与一个不固定的 Euler 等离子流等离子体等离子体等离子方程式解解算法解算法不固定的模型相匹配。 在一次时间模拟中, 将前等离子流中, 平流的解解解解解流中, 和流中, 直流中, 直流中, 直径网络流中, 直径解的解的解路路路路路路路路路路路路路路路路路路路路。