Diverse domains of science and engineering require and use mechanistic mathematical models, e.g. systems of differential algebraic equations. Such models often contain uncertain parameters to be estimated from data. Consider a dynamic model discrimination setting where we wish to chose: (i) what is the best mechanistic, time-varying model and (ii) what are the best model parameter estimates. These tasks are often termed model discrimination/selection/validation/verification. Typically, several rival mechanistic models can explain data, so we incorporate available data and also run new experiments to gather more data. Design of dynamic experiments for model discrimination helps optimally collect data. For rival mechanistic models where we have access to gradient information, we extend existing methods to incorporate a wider range of problem uncertainty and show that our proposed approach is equivalent to historical approaches when limiting the types of considered uncertainty. We also consider rival mechanistic models as dynamic black boxes that we can evaluate, e.g. by running legacy code, but where gradient or other advanced information is unavailable. We replace these black-box models with Gaussian process surrogate models and thereby extend the model discrimination setting to additionally incorporate rival black-box model. We also explore the consequences of using Gaussian process surrogates to approximate gradient-based methods.
翻译:科学和工程的不同领域需要并使用机械数学模型,例如不同的代数方程式系统。这些模型通常包含从数据中估算的不确定参数。考虑一个动态模型差异,我们希望选择的模型是:(一)什么是最好的机械、时间变化模型,(二)什么是最佳模型参数估计。这些任务通常被称为模型歧视/选择/验证/验证/核查。这些任务通常被称为模型歧视/选择/验证/验证/验证。一些相互对立的机械模型可以解释数据,因此我们吸收现有数据,并进行新的实验以收集更多的数据。模型歧视动态实验的设计有助于最理想地收集数据。对于能够获取梯度信息的对立的机械模型,我们扩大现有方法以纳入更广泛的问题不确定性,并表明在限制所考虑的不确定性类型时,我们所提议的方法相当于历史方法。我们还把相对立的机械模型视为动态黑盒,我们可以通过运行遗留代码来评估,但是没有梯度或其他高级信息。我们将这些黑盒模型替换为高斯进程模型的替代模型替代模型,用来替代模型,从而扩大我们使用高斯模型的渐变结果。