We are interested in developing a unified machine learning model over many mobile devices for practical learning tasks, where each device only has very few training data. This is a commonly encountered situation in mobile computing scenarios, where data is scarce and distributed while the tasks are distinct. In this paper, we propose a federated few-shot learning (FedFSL) framework to learn a few-shot classification model that can classify unseen data classes with only a few labeled samples. With the federated learning strategy, FedFSL can utilize many data sources while keeping data privacy and communication efficiency. There are two technical challenges: 1) directly using the existing federated learning approach may lead to misaligned decision boundaries produced by client models, and 2) constraining the decision boundaries to be similar over clients would overfit to training tasks but not adapt well to unseen tasks. To address these issues, we propose to regularize local updates by minimizing the divergence of client models. We also formulate the training in an adversarial fashion and optimize the client models to produce a discriminative feature space that can better represent unseen data samples. We demonstrate the intuitions and conduct experiments to show our approaches outperform baselines by more than 10% in learning vision tasks and 5% in language tasks.


翻译:我们有兴趣在很多移动设备上开发一个统一的机器学习模型,用于实际学习任务,每个设备只有很少的培训数据。这是移动计算假设情景中常见的一种常见情况,即数据稀少,在任务不同时分散。在本文中,我们提议一个联合的少发学习框架(FedFSL),以学习一个能够用少数标签样本对隐蔽数据类别进行分类的微发分类模型。根据联合学习战略,FedFSL可以使用许多数据源,同时保持数据隐私和通信效率。有两个技术挑战:1)直接使用现有的联合学习方法可能导致客户模式产生的决定界限不吻合,2)限制对客户的类似决定界限将超过培训任务,但不能很好地适应不可见的任务。为了解决这些问题,我们建议通过尽量减少客户模式的差异来规范本地更新。我们还以对抗方式制定培训,并优化客户模式,以产生能够更好代表隐蔽数据样本的有区别的特征空间。我们演示直觉并进行实验,以便在学习5项语言任务中以超过10%的方式展示我们的方法超越基线。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员