Previous work on controllable text generation has explored the idea of control from the latent space, such as optimizing a representation with attribute-related classifiers or sampling a representation from relevant discrete samples. However, they are not effective enough in modeling both the latent space and the control, leaving controlled text with low quality and diversity. In this work, we propose a novel control framework using probability density estimation in the latent space. Our method utilizes an invertible transformation function, the Normalizing Flow, that maps the complex distributions in the latent space to simple Gaussian distributions in the prior space. Thus, we can perform sophisticated and flexible control in the prior space and feed the control effects back into the latent space owing to the one-one-mapping property of invertible transformations. Experiments on single-attribute controls and multi-attribute control reveal that our method outperforms several strong baselines on attribute relevance and text quality and achieves the SOTA. Further analysis of control strength adjustment demonstrates the flexibility of our control strategy.
翻译:先前关于可控文本生成的工作探索了从潜在空间进行控制的想法,例如优化带有属性分类器的表示式或从相关离散样本中取样的表示式;然而,这些表示法在模拟潜在空间和控制方面不够有效,使受控文本质量和多样性较低。在这项工作中,我们提出了一个使用潜在空间概率密度估计的新式控制框架。我们的方法使用了不可逆的变换功能,即标准化流程,该流程将潜在空间的复杂分布图绘制成先前空间的简单高山分布图。因此,我们可以在先前空间进行精密和灵活的控制,并将控制效果反馈到潜在空间,因为不可逆变的一幅图属性。关于单项配置控制和多属性控制的实验表明,我们的方法在属性相关性和文本质量方面超越了几个强有力的基线,并实现了SOTA。进一步分析控制强度调整显示了我们控制战略的灵活性。