Consider a user who wishes to store a file in multiple servers such that at least t servers are needed to reconstruct the file, and z colluding servers cannot learn any information about the file. Unlike traditional secret-sharing models, where perfectly secure channels are assumed to be available at no cost between the user and each server, we assume that the user can only send data to the servers via a public channel, and that the user and each server share an individual secret key with length n. For a given n, we determine the maximal length of the file that the user can store, and thus quantify the necessary cost to store a file of a certain length, in terms of the length of the secret keys that the user needs to share with the servers. Additionally, for this maximal file length, we determine (i) the optimal amount of local randomness needed at the user, (ii) the optimal amount of public communication from the user to the servers, and (iii) the optimal amount of storage requirement at the servers.
翻译:如果用户想在多个服务器中存储一个文件,那么至少需要 t 服务器来重建文件, z 串通服务器无法了解有关文件的任何信息。 与传统的秘密共享模式不同, 假设用户和每个服务器之间可以免费获得完全安全的频道, 我们假设用户只能通过公共频道将数据发送到服务器, 用户和每个服务器共享单个秘密密钥长度 n。 对于给定 n, 我们确定用户可以存储的文件的最大长度, 从而量化存储一定长度的文件的必要成本, 即用户需要与服务器共享的秘密密钥长度。 此外, 对于这一最大文件长度, 我们确定( 一) 用户所需的本地随机性的最佳数量, (二) 用户与服务器之间的公共通信的最佳数量, 以及 (三) 服务器的存储要求的最佳数量 。